- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adjouadi, Malek (2)
-
Cabrera, Anastasio (2)
-
Cabrerizo, Mercedes (2)
-
Izquierdo, Walter (2)
-
Martin, Harold (2)
-
Morar, Ulyana (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martin, Harold; Izquierdo, Walter; Morar, Ulyana; Cabrerizo, Mercedes; Cabrera, Anastasio; Adjouadi, Malek (, 2020 International Conference on Computational Science and Computational Intelligence (CSCI))null (Ed.)We propose a novel pipeline for the real-time detection of myocardial infarction from a single heartbeat of a 12-lead electrocardiograms. We do so by merging a real-time R-spike detection algorithm with a deep learning Long-Short Term Memory (LSTM) network-based classifier. A comparative assessment of the classification performance of the resulting system is performed and provided. The proposed algorithm achieves an inter-patient classification accuracy of 95.76% (with a 95% Confidence Interval (CI) of ±2.4%), a recall of 96.67% (±2.4% 95% CI), specificity of 93.64% (±5.7% 95% CI), and the average J-Score is 90.31% (±6.2% 95% CI). These state-of-the-art myocardial infarction detection metrics are extremely promising and could pave the wave for the early detection of myocardial infarctions. This high accuracy is achieved with a processing time of 40 milliseconds, which is most appropriate for online classification as the time between fast heartbeats is around 300 milliseconds.more » « less
An official website of the United States government
